Tau protein is primarily expressed in neuronal axons and modulates microtubule stability. Tau phosphorylation, aggregation and subcellular mislocalization coincide with neurodegeneration in numerous diseases, including Alzheimer's disease [AD]. During AD pathogenesis, tau misprocessing accompanies Aß accumulation; however, AD animal models, despite elevated Aß, fail to develop tauopathy. To assess whether lack of tau pathology is linked to short lifespan common to most AD models, we examined tau processing in extraordinarily long-lived, mouse-sized naked mole-rats (NMR; ~32 years), which express appreciable levels of Aß throughout life. NMRs, like other mammals, displayed highest tau phosphorylation during brain development. While tau phosphorylation decreased with aging, unexpectedly adult NMRs had higher levels than transgenic mice overexpressing mutant human tau. However, in sharp contrast with the somatodendritic accumulation of misprocessed tau in the transgenic mice, NMRs maintain axonal tau localization. Intriguingly, the adult NMR tau protein is 88kDa, much larger than 45-68kDa tau expressed in other mammals. We propose that this 88kDa tau protein may offer exceptional microtubule stability and neuroprotection against lifelong elevated Aß.