2024
DOI: 10.1609/aaai.v38i6.28330
|View full text |Cite
|
Sign up to set email alerts
|

Taxonomy Driven Fast Adversarial Training

Kun Tong,
Chengze Jiang,
Jie Gui
et al.

Abstract: Adversarial training (AT) is an effective defense method against gradient-based attacks to enhance the robustness of neural networks. Among them, single-step AT has emerged as a hotspot topic due to its simplicity and efficiency, requiring only one gradient propagation in generating adversarial examples. Nonetheless, the problem of catastrophic overfitting (CO) that causes training collapse remains poorly understood, and there exists a gap between the robust accuracy achieved through single- and multi-step AT.… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 25 publications
0
0
0
Order By: Relevance