“…The considered features from the JavaScript Malware Collection dataset include executiontime,functioncalls,conditionalstatements,breakstatements,andBoolean.Thefeatures extractedfromthedatasetsaresubjectedtothedatatransformationforwhichthelogtransformation isapplied.Then,thefeatureselectionstepisadaptedinwhichtransformeddataaresubjectedtothe mutualinformation(Learned-Miller,2013)insuchawaythatonlysignificantfeaturesareacquired, whichisthenusedforthedetectionprocess.Finally,maliciousJavaScriptdetectionisperformed usingtheselectedfeaturesforwhichtheproposedadaptiveTaylor-HHO-basedDCNNisemployed. Here,theDCNN (Babu,et al,2016) (Kumar,et al,2020)classifierareoptimallytrainedusingthe proposedadaptiveTaylor-HHOalgorithmthatisdevelopedthroughtheintegrationoftheadaptive theoryintheTaylor-HHOalgorithm,whichisalreadydevelopedbyintegratingTaylorseries (Mangai, et al,2014)intheHHO (Heidaria,et al,2019).TheoutputoftheproposedmaliciousJavaScript detectiontechniqueliesintwoclasses,namelynormalandmaliciousJavaScript.Figure1portrays theSchematicviewoftheproposedAdaptive-Taylor-HHO-basedDCNNformaliciousJavaScript detection.…”