Micro‐packed bed reactors, due to their high mass and heat transfer efficiency, and inherent safety, have significant advantages in processes such as hydrogenation reactions, debenzylation reactions, and catalyst screening. Despite extensive studies on gas–liquid two‐phase flow in micro‐packed beds, research on gas–liquid–liquid three‐phase flow remains limited. This study investigates the mass transfer and pressure drop behaviors of gas–liquid–liquid three‐phase flow in micro‐packed beds. Experimental results reveal that gas–liquid mass transfer is influenced by dispersion and turbulence enhancements, as well as the secondary liquid phase. A mathematical model for mass transfer shows strong agreement with experimental data. Additionally, a pressure drop model, considering inertial, viscous, and interfacial tension forces, accurately predicts experimental results. These findings provide valuable insights for optimizing micro‐packed bed operations.