TCAD‐enabled machine learning framework for DC and RF performance evaluation of InGaAs sub‐channel DG‐HEMTs
Leeban Moses M,
Saravana Kumar R,
Muhammad Faheem
et al.
Abstract:This research presents a machine learning (ML)‐based model that determines the DC and RF characteristics of InGaAs sub‐channel double gate high electron mobility transistors (DG‐HEMTs) to optimize the device structure. We employ technology computer‐aided design (TCAD) simulations to analyze the DC and RF performance of InGaAs sub‐channel DG‐HEMTs, generating a range of datasets by varying the material composition, layer width, and thickness of different layers in the device structure. We then train and optimiz… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.