Quetiapine is a new type of antipsychotic drug, with effective protection of pheochromocytoma PC12 cells from oxidative stress-induced apoptosis. Ultraviolet-B radiation can increase reactive oxygen species (ROS) production, resulting in significant inflammatory responses in damaged skin. Thus, the purpose of this study is to explore whether quetiapine protects the skin from intermediate-wave ultraviolet (UVB)-induced damage through antioxidant stress. In vivo, we found quetiapine treatment was able to significantly decrease skin thickness, erythema, and edema, as well as inflammation compared to control group. Moreover, quetiapine treatment increased the activities of antioxidant enzymes, including superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px). In addition, it reduced the production of malondialdehyde (MDA), a kind of oxidized lipid. In vitro, we found that quetiapine blocked UVB-induced intracellular ROS generation and maintained the cell activity at a normal level. Furthermore, we tested the phosphorylation of p38 both in vivo and in vitro, and we found that quetiapine could inhibit phosphorylation of p38, which is caused by UVB irradiation. We concluded that quetiapine was able to relieve UVB-induced skin damage through its antioxidative properties. These effects might be associated with p38 MAPK signaling pathway.