Spatial skills are an important component of success in science, technology, engineering, and math (STEM) fields. A majority of what we know about spatial skills today is a result of more than 100 years of research focused on understanding and identifying the kinds of skills that make up this skill set. Over the last two decades, the field has recognized that, unlike the spatial skills measured by psychometric tests developed by psychology researchers, the spatial problems faced by STEM experts vary widely and are multifaceted. Thus, many psychological researchers have embraced an interdisciplinary approach to studying spatial thinking with the aim of understanding the nature of this skill set as it occurs within STEM disciplines. In a parallel effort, discipline-based education researchers specializing in STEM domains have focused much of their research on understanding how to bolster students' skills in completing domain-specific spatial tasks. In this paper, we discuss four lessons learned from these two programs of research to enhance the field's understanding of spatial thinking in STEM domains. We demonstrate each contribution by aligning findings from research on three distinct STEM disciplines: structural geology, surgery, and organic chemistry. Lastly, we discuss the potential implications of these contributions to STEM education.
Significance statementWith more than 50% of science, technology, engineering, and math (STEM) majors leaving the STEM fields prior to graduation, there has been an increased focus on improving STEM retention rates at universities across the USA (National Science Foundation, 2018). Spatial skills are an important component of success in STEM fields and have been the focus of much psychological research for the last 100 years. Yet, only in the last few decades has the field of psychology come to recognize the complexity and nuance of the spatial tasks carried out by STEM experts during their practice. Consequently, a growing number of researchers are taking an interdisciplinary perspective on spatial thinking in STEM, with the aim of broadening our understanding of the kinds of spatial skills required to practice STEM domains. In a parallel effort, having a strong appreciation for the importance of spatial thinking to STEM reasoning and problem-solving, discipline-based education researchers have focused much research on understanding how to bolster students' skills in completing domain-specific spatial tasks. This paper highlights critical lessons learned from interdisciplinary and discipline-based education research in three STEM fields-structural geology, surgery, and chemistry-and considers their implications for how to support students' STEM learning and success at advanced educational levels.