2013
DOI: 10.1166/jne.2013.1032
|View full text |Cite
|
Sign up to set email alerts
|

Teaching a Multidisciplinary Nanotechnology Laboratory Course to Undergraduate Students

Abstract: Here we report our efforts to teach the first multidisciplinary undergraduate nanotechnology laboratory course in the College of Engineering at North Carolina State University (NCSU). The course was designed to provide undergraduate students with hands-on experience in nanoscience and nanotechnology. The theme of this laboratory course is the integration of nanotechnology with microsystem technology, i.e., bottom-up synthesis meeting top-down fabrication. This course consists of seven carefully designed lab mo… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1

Citation Types

1
2
0
1

Year Published

2018
2018
2020
2020

Publication Types

Select...
2
1

Relationship

0
3

Authors

Journals

citations
Cited by 3 publications
(4 citation statements)
references
References 31 publications
1
2
0
1
Order By: Relevance
“…(14) ). The scaling rules presented here are consistent with previously reported transport of microparticles and nanoparticles above a vibrating plate [ 11 ].…”
Section: Scaling Analysissupporting
confidence: 91%
See 1 more Smart Citation
“…(14) ). The scaling rules presented here are consistent with previously reported transport of microparticles and nanoparticles above a vibrating plate [ 11 ].…”
Section: Scaling Analysissupporting
confidence: 91%
“…The reliance on portable off-the-shelf supplies and equipment represent a significant cost-savings as this system does not rely on facilities for microfabrication and that assembly can be done almost anywhere. The protocol we describe here could be used as a pedagogical tool to incorporate directed assembly as part of the curriculum for a multidisciplinary course in nanotechnology [ 11 , 12 ].…”
Section: Introductionmentioning
confidence: 99%
“…Generally, Hands-on laboratories are known for requiring high costs of materials, in addition of requiring more space and more maintenance staff [4]. Considering, as an example, electrical engineering areas [5] and micronanoscience [6], it would be accurate to say that these costs and requirements increase even higher where the quality of education calls for a large variety of experiments, as it is the case in robotics, automation, mechatronic engineering, etc.…”
Section: Introductionmentioning
confidence: 99%
“…βρόχος υστέρησης για την περιγραφή των μαγνητικών ιδιοτήτων) (Kumar & Koumbhat, 2016;Murty et al, 2013). Τέλος, σε άρθρα εμπειρικών ερευνών στα οποία περιγράφονταν η εκπαίδευση φοιτητών στη Ν-ΕΤ και στα οποία οι συγγραφείς υποστήριζαν ότι εισήγαν τις εξαρτημένες από το μέγεθος ιδιότητες των υλικών της νανοκλίμακας, εντοπίστηκαν διάφορες όψεις όπως η αλλαγή των οπτικών ιδιοτήτων νανοσωματιδίων χρυσού λόγω του συντονισμού των επιφανειακών πλασμονίων, οι μοναδικές οπτικές ιδιότητες των κβαντικών τελειών λόγω της κβάντωσης των ενεργειακών καταστάσεων, η επίδραση του Α/V στο σημείο βρασμού, στις οπτικές και μαγνητικές ιδιότητες κτλ (Zhu et al, 2013;Drane et al, 2009). Στην πρόταση της Ταιβάν (Huang et al, 2011 όπως αναφέρεται στο Sakhnini & Blonder, 2015) των πυρηνικών εννοιών της Ν-ΕΤ για την α/θμια εκπαίδευση, δεν χρησιμοποιείται η ορολογία «ιδιότητες που εξαρτώνται από το μέγεθος».…”
Section: ε=unclassified