The framework of ecosystem services (ES) and disservices (ED) has increasingly been used in various science, technology, engineering, and mathematics (STEM) disciplines, including soil science. The objectives of this study were to use ES/ED concepts to extend and test an existing lecture and laboratory exercise on soil organic carbon (SOC) in an online introductory soil science course (FNR 2040: Soil Information Systems) taught to Clemson University students from various STEM disciplines (forestry, wildlife biology, and environmental and natural resources) in Fall 2020. The laboratory exercise was extended with a series of reusable learning objects (RLOs), which are self-contained digital modules commonly utilized in e-learning. The laboratory exercise consisted of identifying ES and calculating the avoided social cost of carbon (SC-CO2) from soil organic carbon stocks in the assigned soil’s topsoil horizon. The laboratory exercise effectively increased student familiarity with ES/ED as indicated by the post-assessment survey with a +24.4% increase in the moderately familiar category and a +36.1% increase in the extremely familiar category. The graded online quiz consisted of ten questions and was taken by 51 students with an average score of 8.7 (out of 10). A post-assessment survey indicated that most of the students found that the laboratory was an effective way to learn about ES/ED with examples from soil science. Detailed students’ comments indicated enjoyment of learning (e.g., calculations, applying new knowledge), the value of multimedia (e.g., PowerPoint, video), the flexibility of learning (e.g., different parts in the laboratory), the applicability of content (e.g., real-world examples), and criticism (e.g., tedious calculations). A word cloud based on students’ comments about their experience with the laboratory exercise on soil ES indicated the most common words used by students to describe their experience, such as “soil services”, “learning”, “enjoyed”, and “ecosystems”, among others. Incorporating ES/ED into an undergraduate STEM course enabled students to connect ES/ED provided by soil with the societal systems reliant on the soil resources.