Introducing pumped storage to retrofit existing cascade hydropower plants into hybrid pumped storage hydropower plants (HPSPs) could increase the regulating capacity of hydropower. From this perspective, a capacity configuration optimization method for a multi-energy complementary power generation system comprising hydro, wind, and photovoltaic power is developed. Firstly, to address the uncertainty of wind and photovoltaic power outputs, the K-means clustering algorithm is applied to deal with historical data on load and photovoltaic, wind, and water inflow within a specific region over the past year. This process helps reduce the number of scenarios, resulting in 12 representative scenarios and their corresponding probabilities. Secondly, with the aim of enhancing outbound transmission channel utilization and decreasing the peak–valley difference for the receiving-end power grid’s load curve, a multi-objective optimization model based on the normal boundary intersection (NBI) algorithm is developed for the capacity optimization of the multi-energy complementary power generation system. The result shows that retrofitting cascade hydropower plants with pumped storage units to construct HPSPs enhances their ability to accommodate wind and photovoltaic power. The optimal capacity of wind and photovoltaic power is increased, the utilization rate of the system’s transmission channel is improved, and the peak-to-valley difference for the residual load of the receiving-end power grid is reduced.