“…Recently, deep learning (DL) approaches have proven to be a promising tool in modeling hydrologic dynamics (Shen, 2018; Shen & Lawson, 2021; Sit et al., 2020). Among these, long short‐term memory (LSTM) networks (Hochreiter & Schmidhuber, 1997) present excellent performance in modeling soil moisture (Fang et al., 2017, 2019), streamflow (Feng et al., 2020; Frame et al., 2021; Gauch, Kratzert, et al., 2021; Ha et al., 2021; Kratzert et al., 2019; Nearing, Klotz, et al., 2021; Xiang & Demir, 2020), water table depth (Zhang et al., 2018), water quality variables such as water temperature (Rahmani et al., 2020, 2021) and dissolved oxygen (Zhi et al., 2021), and reservoir modulation (Ouyang et al., 2021). DL can be adapted for tasks like uncertainty quantification (Fang et al., 2020; Li et al., 2021), data assimilation (Fang & Shen, 2020; Feng et al., 2020), and multiscale modeling (Liu et al., 2022).…”