The dynamic tree stability assessment technique allows trees to be measured efficiently, under realistic weather conditions. In this study, the stability of four trees, including two conifers and two broad-leaved species was assessed in the Botanical Gardens of the University of Sopron, Hungary. The examined trees included Horse chestnut, Japanese zelkova, Douglas fir and Giant sequoia. Each tree was measured in various weather and seasonal conditions. Results show that the seasons affected the stability of broadleaved trees significantly, due to considerable changes in the crown surface area, while this difference was much lower in softwoods. Rainy weather loosens the topsoil, which adversely affects the stability of trees with relatively shallow roots. Lower layers take longer to saturate, and therefore trees with very deep roots are usually unaffected by the looser topsoil, while the increased weight of the top layer compacts the lower layers and improves stability, as evidenced by results measured on Sequoia. Snow accumulation on the branches increases the inertia of the tree, which imposes higher torque on the root collar, decreasing stability. In the meantime, the increased resistance offered by frozen ground stabilizes the tree, which more-or-less counterbalances this effect. A more extensive database of tree stability under different conditions is being built to allow for more comprehensive analysis of various factors, like wind direction, tree health and morphology, shading, etc.