Purpose
The robot-assisted approach for Ivor Lewis esophagectomy offers an enlarged, three-dimensional overview of the intraoperative situs. The vagal nerve (VN) can easily be detected, preserved, and intentionally resected below the separation point of the recurrent laryngeal nerve (RLN). However, postoperative vocal cord paresis can result from vagal or RLN injury during radical lymph node dissection, presenting a challenge to the operating surgeon.
Methods
From May to August 2019, 10 cases of robot-assisted minimally invasive esophagectomy (RAMIE) with extended 2-field lymphadenectomy, performed at the University Medical Center Mainz, were included in a prospective cohort study. Bilateral intermittent intraoperative nerve monitoring (IONM) of the RLN and VN was performed, including pre- and postoperative laryngoscopy assessment.
Results
Reliable mean signals of the right VN (2.57Â mV/4.50Â ms) and the RLN (left 1.24Â mV/3.71Â ms, right 0.85Â mV/3.56Â ms) were obtained. IONM facilitated the identification of the exact height of separation of the right RLN from the VN. There were no cases of permanent postoperative vocal paresis. Median lymph node count from the paratracheal stations was 5 lymph nodes.
Conclusion
IONM was feasible during RAMIE. The intraoperative identification of the RLN location contributed to the accuracy of lymph node dissection of the paratracheal lymph node stations. RLN damage and subsequent postoperative vocal cord paresis can potentially be prevented by IONM.