The tensile creep behavior of yttrium-and lanthanum-doped alumina (at dopant levels below the solubility limit) was examined. Both compositions (100 ppm yttrium, 100 ppm lanthanum) exhibited a uniform microstructure consisting of fine, equiaxed grains. The creep resistance of both doped aluminas was enhanced, compared with undoped alumina, by about two orders of magnitude, which was almost the same degree of improvement as for materials with higher dopant levels (in excess of the solubility limit). In addition, measured creep rupture curves exhibited predominantly steady-state creep behavior. Our results, therefore, verified that the creep improvement in these rare-earth doped aluminas was primarily a solid-solution effect.