Abstract. The application of Structure-from-Motion (SfM) and Multi-View-Stereo matching with aerial images can be successfully used for deriving dense point clouds to analyse changes in the mountain environment, which is characterized by changes due to the action of natural process. The comparison of multiple datasets requires to setup a stable reference system, task that is generally implemented by means of ground control points (GCPs). On the other hand, their positioning may be sometimes difficult in mountains. To cope with this drawback an approach termed as Multitemporal SfM (MSfM) is presented: multiple blocks are oriented together within a unique SfM project, where GCPs are used in only one epoch for establishing the absolute datum. Accurate coregistration between different epochs depends on the automatic extraction of tie points in stable areas. To verify the application of MSfM in real cases, this paper presents three case studies where different types of photogrammetric data are adopted, including images from drones and manned aircrafts. Applications to glacier and mountain river erosion are entailed.