Painful neuropathic injuries are accompanied by robust inflammatory and oxidative stress responses that contribute to the development and maintenance of pain. After neural trauma the inflammatory enzyme cyclooxygenase-2 (COX-2) increases concurrent with pain onset. Although pre-treatment with the COX-2 inhibitor, meloxicam, before a painful nerve root compression prevents the development of pain, the pathophysiological mechanisms are unknown. This study evaluated if pre-treatment with meloxicam prior to painful root injury prevents pain by reducing spinal inflammation and peripheral oxidative stress. Glial activation and expression of the inflammatory mediator secreted phospholipase A (sPLA) in the spinal cord were assessed at day 7 using immunohistochemistry. The extent of oxidative damage was measured using the oxidative stress marker, 8-hydroxyguanosine (8-OHG) and localization of 8-OHG with neurons, microglia and astrocytes in the spinal cord and peripherally in the dorsal root ganglion (DRG) at day 7. In addition to reducing pain, meloxicam reduced both spinal microglial and astrocytic activation at day 7 after nerve root compression. Spinal sPLA was also reduced with meloxicam treatment, with decreased production in neurons, microglia and astrocytes. Oxidative damage following nerve root compression was found predominantly in neurons rather than glial cells. The expression of 8-OHG in DRG neurons at day 7 was reduced with meloxicam. These findings suggest that meloxicam may prevent the onset of pain following nerve root compression by suppressing inflammation and oxidative stress both centrally in the spinal cord and peripherally in the DRG.