Impact light flash is an intense light flash released when a target is impacted by a hypervelocity projectile. Light flash is caused by emissions from a jet of shocked material which is thrown from the impact site. Impact light flash phenomenology is now being considered for applications where remote diagnostics are required to observe and diagnose impacts on satellites and spacecraft. Additionally, this phenomena and remote diagnostics are under consideration for deep space exploration and missile defense applications. Currently, optical signatures created from hypervelocity impact can be utilized as the basis for detectors (spectrometers, pyrometers), which characterize the material composition and temperature. To establish this capability technically in the laboratory, we have conducted a series of experiments on a two-stage light gas gun at impact velocities ranging from 1.96 to 4.21 km/s. The focus of this work is to develop a flash signatures collected methods for use as a reliable light flash, and late time radiating evolution to characterize material behavior in the shocked and expanding state; ascertain scaling of light flash with impact velocity, and determine the temperature of the impact flash resulting from radiating emissions when photomultiplier tube (PMT) are used in conjunction with narrow band pass filtering at specific wavelengths as a pyrometer. The results of these experiments are discussed in detail using natural dolomite target.