Rural and remote area electrification is of grave concern around the globe. Therefore, well-planned and cost-effective microgrids integrating renewable energy sources are emerging as effective solutions. However, the microgrid's stable operation and its future deployment is affected by the perturbations caused due to uncertainity in renewable sources, dependency on the battery state of charge, and load variation. So, considering the possible concerns affecting the planning and development of a microgrid for any given region, this paper proposes a comprehensive performance assessment of the hybrid residential microgrid based on a load model of Kibber village in Himachal Pradesh, India. The proposed approach is divided into three parts for the best planning of microgrids. Firstly, the MATLAB–Simulink software technically analyzes the system performance under perturbations considering the available renewable sources. Secondly, an economic analysis using HOMER Pro software is done to examine the cost-effectiveness of the proposed microgrid model through the simulation of electrical loads for Kibber village, considering the available renewable sources. Lastly, a real-time analysis of the proposed prototype of programmable logic controller-based hardware test bench has been developed, aiming for future regional microgrid deployment. System voltage, frequency, power shared, percentage of load met, energy cost, available renewable energy resource, etc. have been considered for validating the proposed controller. The proposed comprehensive assessment of the microgrid model is reproducible with necessary modifications for any geographical location. It will be helpful for its future deployment aiming at rural and remote electrification.