The use of two‐dimensional images to teach students about three‐dimensional molecules continues to be a prevalent issue in many classrooms. As affordable visualization technologies continue to advance, there has been an increasing interest to utilize novel technology, such as augmented reality (AR), in the development of molecular visualization tools. Existing evaluations of these visual–spatial learning tools focus primarily on student performance and attitude, with little attention toward potential inequity in student participation. Our study adds to the current literature on introducing molecular visualization technology in biochemistry classrooms by examining the potential inequity in a group activity mediated by AR technology. Adapting the participatory equity framework to our specific context, we view equity and inequity in terms of access to the technological conversational floor, a social space created when people enter technology‐mediated joint endeavors. We explore three questions: What are the different ways students interact with an AR model of the potassium channel? What are salient patterns of participation that may signify inequity in classroom technology use? What is the interplay between group social dynamics and the introduction of AR technology in the context of a technology‐mediated group activity? Pairing qualitative analysis with quantitative metrics, our mixed‐methods approach produced a complex story of student participation in an AR‐mediated group activity. The patterns of student participation showed that equity and inequity in an AR‐mediated biochemistry group learning activity are fluid and multifaceted. It was observed that students who gave more explanations during group discussion also had more interactions with the AR model (i.e., they had greater access to the technological conversational floor), and their opinion of the AR model may have greater influence on how their group engage with the AR model. This study provides more nuanced ways of conceptualizing equity and inequity in biochemistry learning settings.