Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Reinforcement learning (RL) has been applied to financial portfolio management in recent years. Current studies mostly focus on profit accumulation without much consideration of risk. Some risk‐return balanced studies extract features from price and volume data only, which is highly correlated and missing representation of risk features. To tackle these problems, we propose a weight control unit (WCU) to effectively manage the position of portfolio management in different market statuses. A loss penalty term is also designed in the reward function to prevent sharp drawdown during trading. Moreover, stock spatial interrelation representing the correlation between two different stocks is captured by a graph convolution network based on fundamental data. Temporal interrelation is also captured by a temporal convolutional network based on new factors designed with price and volume data. Both spatial and temporal interrelation work for better feature extraction from historical data and also make the model more interpretable. Finally, a deep deterministic policy gradient actor–critic RL is applied to explore optimal policy in portfolio management. We conduct our approach in a challenging non‐short‐selling market, and the experiment results show that our method outperforms the state‐of‐the‐art methods in both profit and risk criteria. Specifically, with 6.72% improvement on an annualized rate of return, 7.72% decrease in maximum drawdown, and a better annualized Sharpe ratio of 0.112. Also, the loss penalty and WCU provide new aspects for future work in risk control.
Reinforcement learning (RL) has been applied to financial portfolio management in recent years. Current studies mostly focus on profit accumulation without much consideration of risk. Some risk‐return balanced studies extract features from price and volume data only, which is highly correlated and missing representation of risk features. To tackle these problems, we propose a weight control unit (WCU) to effectively manage the position of portfolio management in different market statuses. A loss penalty term is also designed in the reward function to prevent sharp drawdown during trading. Moreover, stock spatial interrelation representing the correlation between two different stocks is captured by a graph convolution network based on fundamental data. Temporal interrelation is also captured by a temporal convolutional network based on new factors designed with price and volume data. Both spatial and temporal interrelation work for better feature extraction from historical data and also make the model more interpretable. Finally, a deep deterministic policy gradient actor–critic RL is applied to explore optimal policy in portfolio management. We conduct our approach in a challenging non‐short‐selling market, and the experiment results show that our method outperforms the state‐of‐the‐art methods in both profit and risk criteria. Specifically, with 6.72% improvement on an annualized rate of return, 7.72% decrease in maximum drawdown, and a better annualized Sharpe ratio of 0.112. Also, the loss penalty and WCU provide new aspects for future work in risk control.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.