Experimental investigations by various groups over the past decade have uncovered the main features of the flow in hydraulic torque converters. Measurement techniques include laser and hot wire velocimetry, fast response and conventional five-hole probes, and blade and wall static pressure measurement. In both the pump and turbine, the through flow velocity is high near the pressure surface shell corner while the flow in the suction surface core corner is highly turbulent and may be separated and reversed. The position of the stator in a passage curved in the meridional plane leads to secondary flow and low velocities at the core near the pump inlet. Velocity gradients coupled with flow turning and rotor rotation lead to strong secondary flows. By using data from a combination of measurement techniques, torque converter torque, power and efficiency are calculated, and the effect of element efficiency on overall efficiency is demonstrated. It is concluded that design methods should be developed that allow for nonuniform velocity profiles, flow separation, secondary circulation and interaction effects between elements.