2012
DOI: 10.2147/oams.s37395
|View full text |Cite
|
Sign up to set email alerts
|

TELBS robust linear regression method

Abstract: Ordinary least squares estimates can behave badly when outliers are present. An alternative is to use a robust regression technique that can handle outliers and influential observations. We introduce a new robust estimation method called TELBS robust regression method. We also introduce a new measurement called S h (i) for detecting influential observations. In addition, a new measure for goodness of fit, called R 2 RFPR , is introduced. We provide an algorithm to perform the TELBS estimation of regression par… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1

Citation Types

0
0
0
3

Year Published

2013
2013
2023
2023

Publication Types

Select...
6

Relationship

0
6

Authors

Journals

citations
Cited by 6 publications
(3 citation statements)
references
References 31 publications
0
0
0
3
Order By: Relevance
“…Serupa dengan metode MCD, metode TELBS juga dapat mengatasi adanya pencilan pada peubah bebas (𝑋) dan peubah terikat (𝑌) (Gusriani & Firdaniza, 2018). Menurut Tabatabai (2012) metode TELBS dilakukan dengan meminimumkan fungsi objektif.…”
Section: Pendahuluanunclassified
See 2 more Smart Citations
“…Serupa dengan metode MCD, metode TELBS juga dapat mengatasi adanya pencilan pada peubah bebas (𝑋) dan peubah terikat (𝑌) (Gusriani & Firdaniza, 2018). Menurut Tabatabai (2012) metode TELBS dilakukan dengan meminimumkan fungsi objektif.…”
Section: Pendahuluanunclassified
“…Regresi robust estimasi TELBS dilakukan dengan meminimumkan fungsi objektif (Tabatabai et al, 2012):…”
Section: F Regresi Robust Metode Telbsunclassified
See 1 more Smart Citation