XGBoost is recognized as an algorithm with exceptional predictive capacity. Models for a binary response indicating the existence of accident claims versus no claims can be used to identify the determinants of traffic accidents. This study compared the relative performances of logistic regression and XGBoost approaches for predicting the existence of accident claims using telematics data. The dataset contained information from an insurance company about the individuals' driving patterns-including total annual distance driven and percentage of total distance driven in urban areas. Our findings showed that logistic regression is a suitable model given its interpretability and good predictive capacity. XGBoost requires numerous model-tuning procedures to match the predictive performance of the logistic regression model and greater effort as regards to interpretation.Risks 2019, 7, 70 2 of 16 among many others. Here, pay-as-you-drive (PAYD) insurance schemes represent an alternative method for pricing premiums based on personal mileage travelled and driving behaviors. Guillen et al. (2019), Verbelen et al. (2018, and Pérez-Marín and Guillén (2019) showed the potential benefits of analyzing telematics information when calculating motor insurance premiums. Gao and Wüthrich (2019) analyzed high-frequency GPS location data (second per second) of individual car drivers and trips. Gao and Wüthrich (2018) and investigated the predictive power of covariates extracted from telematics car driving data using the speed-acceleration heatmaps proposed by Wüthrich (2017). Further, Hultkrantz et al. (2012) highlighted the importance of PAYD insurance plans insofar as they allow insurance companies to personalize premium calculation and, so, charge fairer rates.The rest of this paper is organized as follows. First, the notation is introduced and the logistic regression and XGBoost methods are outlined. Second, our dataset is described and some descriptive statistics are provided. Third, the results of our comparisons in both a training and a testing sample are reported. Finally, following the conclusion, some practical suggestions are offered about the feasibility of applying new machine learning methods to the field of insurance.