1996
DOI: 10.1109/98.556473
|View full text |Cite
|
Sign up to set email alerts
|

Teletraffic aspects of evolving and next-generation wireless communication networks

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1

Citation Types

0
54
0
8

Year Published

2000
2000
2009
2009

Publication Types

Select...
5
4

Relationship

0
9

Authors

Journals

citations
Cited by 160 publications
(62 citation statements)
references
References 52 publications
0
54
0
8
Order By: Relevance
“…In actual situations, the following value seems to be used as the load of cell i: 5) where n i is the average number of calls in cell i and b i is the call blocking probability of cell i. We refer α i to as the "equivalent traffic".…”
Section: Equivalent Trafficmentioning
confidence: 99%
See 1 more Smart Citation
“…In actual situations, the following value seems to be used as the load of cell i: 5) where n i is the average number of calls in cell i and b i is the call blocking probability of cell i. We refer α i to as the "equivalent traffic".…”
Section: Equivalent Trafficmentioning
confidence: 99%
“…A large number of studies have been made on the performance of cellular mobile systems [4,5,[11][12][13][14][15][16]. Hong et al studied prioritized handoff procedures in cellular systems [4].…”
Section: Introductionmentioning
confidence: 99%
“…As you see, the transition rates in the original Markov chain and those in the time-revered Markov chain differ. Because of this, the original Markov chain is not quasi reversible [3,6] [7] showed an insensitivity property of (5,1) …”
Section: Introductionmentioning
confidence: 99%
“…Adicionalmente se denota como s n k (s h k ), al flujo de llegada asociados con las peticiones nuevas (handovers) de la clase k, de tiempos de servicio y de residencia, por temas de tratabilidad matemática se ha optado por considerar que las peticiones de nuevas sesiones (handovers) de la clase de servicio k llegan al sistema según una distribución de Poisson con tasa λ n k (λ h k ). Por otro lado, aunque no es necesario definir ninguna relación entre λ n k y λ h k , se ha supuesto, por simplicidad, que λ h k es una fracción constante de λ n k [Jab96,BS97]. Así, se denota como λ max a la capacidad del sistema, es decir, la máxima λ que puede ofrecerse al sistema mientras que este es capaz de cumplir los objetivos de calidad de servicio.…”
Section: Esquema De Control De Admisiónunclassified