Silicon telluride (Si2Te3) and many other tellurium containing compounds show emergent Raman peaks located at ~120 cm-1 and ~140 cm-1 as they age. The origin of these two emergent peaks is controversial in the literature and has been attributed to myriad causes such as the intrinsic Raman modes of the telluride materials, surface oxidation, defects, double resonances, and tellurium precipitates. The controversial nature of these peaks has led to the misidentification of highly degraded materials as pristine and to the misinterpretation of changes in Raman spectra. For the first time, quality thin film and bulk crystals of Si2Te3 are grown using a chemical vapor deposition (CVD) process. We then present a comprehensive and multimodal study of various Si2Te3 samples and find that the two emergent Raman peaks originate from tellurium nano-crystallites formed in the degraded surface layers of Si2Te3. The formation of the tellurium nano-crystallites are shown to be a result of a hydrolysis process in which Si2Te3 reacts with atmospheric water vapor. The challenges involved in the fabrication of Si2Te3 based devices are also discussed and ways in which degradation can be either prevented or reversed are demonstrated. Finally, we present preliminary data which shows promising low voltage switching behavior in Si2Te3 memory devices.