Background
Cervical cancer remains a prevalent cancer among women, and reliance on surgical and radio-chemical therapies can irreversibly affect patients’ life span and quality of life. Thus, early diagnosis and further exploration into the pathogenesis of cervical cancer are crucial. Mass spectrometry technology is widely applied in clinical practice and can be used to further investigate the protein alterations during the onset of cervical cancer.
Methods
Employing labeled-free quantitative proteomics technology and bioinformatics tools, we analyzed and compared the differential protein expression profiles between normal cervical squamous cell tissues and cervical squamous cell cancer tissues. GEPIA is an online website for analyzing the RNA sequencing expression data of tumor and normal tissue data from the TCGA and the GTEx databases. This approach aided in identifying qualitative and quantitative changes in key proteins related to the progression of cervical cancer.
Results
Compared to normal samples, a total of 562 differentially expressed proteins were identified in cervical cancer samples, including 340 up-regulated and 222 down-regulated proteins. Gene ontology functional annotation, and KEGG pathway, and enrichment analysis revealed that the differentially expressed proteins mainly participated in metabolic pathways, spliceosomes, regulation of the actin cytoskeleton, and focal adhesion signaling pathways. Specifically, desmoplakin (DSP), protein phosphatase 1, regulatory (inhibitor) subunit 13 like (PPP1R13L) and ANXA8 may be involved in cervical tumorigenesis by inhibiting apoptotic signal transmission. Moreover, we used GEPIA database to validate the expression of DSP, PPP1R13L and ANXA8 in human cancers and normal cervix.
Conclusion
In this study, we identified 562 differentially expressed proteins, and there were three proteins expressed higher in the cervical cancer tissues. The functions and signaling pathways of these differentially expressed proteins lay a theoretical foundation for elucidating the molecular mechanisms of cervical cancer.