AbstractWhile the cost and time for assembling a genome have drastically reduced, it still remains a challenge to assemble a highly contiguous genome. These challenges are rapidly being overcome by the integration of long-read sequencing technologies. Here, we use long sequencing reads to improve the contiguity of the threespine stickleback fish (Gasterosteus aculeatus) genome, a prominent genetic model species. Using Pacific Biosciences sequencing, we were able to fill over 76% of the gaps in the genome, improving contiguity over five-fold. Our approach was highly accurate, validated by 10X Genomics long-distance linked-reads. In addition to closing a majority of gaps, we were able to assemble segments of telomeres and centromeres throughout the genome. This highlights the power of using long sequencing reads to assemble highly repetitive and difficult to assemble regions of genomes. This latest genome build has been released through a newly designed community genome browser that aims to consolidate the growing number of genomics datasets available for the threespine stickleback fish.