The regulation of type L pyruvate kinase concentrations in liver of young (35-45 days old) and adult (60-85 days old) rats starved and re-fed a 71% sucrose diet was investigated. Re-feeding is accompanied by an increase in the enzyme level in liver determined kinetically and immunologically. A constant ratio of kinetic activity to immunological activity was observed under all conditions examined, indicating that activity changes are the result of a regulation of synthesis or degradation and not an interconversion between kinetically active and inactive forms of the enzyme. Synthesis of pyruvate kinase was directly examined by using hepatocytes isolated from starved and re-fed rats. A stimulation of pyruvate kinase synthesis is observed on re-feeding. This increase in synthesis of pyruvate kinase is retained by the isolated hepatocyte for up to 7h in the absence of hormonal stimuli. Administration of glucagon (1mum) to the isolated hepatocytes had no influence on synthesis of pyruvate kinase and no evidence for a glucagon-directed degradation of the enzyme was found. Re-feeding the rat was followed by a transient increase in the synthesis of pyruvate kinase. The peak rate of synthesis was observed before a detectable increase in the enzyme concentration. After a rapid synthesis period, a new steady-state level of the enzyme was achieved and synthesis rates declined. The time course and magnitude for the response to the sucrose diet was dependent on the age of the rat. In young rats, an increase in pyruvate kinase synthesis is observed within 6h and peak synthesis occurs at 11h after re-feeding sucrose. The peak synthesis rate for pyruvate kinase for young rats represents approx. 1% of total protein synthesis. With adult rats, increased pyruvate kinase synthesis is not observed for 11h, with peak synthesis occurring at 24h after re-feeding. In the older rats, peak pyruvate kinase synthesis constitutes greater than 4% of total protein synthesis. Continued re-feeding of the adult rat beyond 24h is accompanied by a decline of pyruvate kinase synthesis to approx. 1.5% of total protein synthesis. The concentration of the enzyme, however, does not decline during this period, suggesting that control of pyruvate kinase degradation as well as synthesis occurs.