Predictions of prospectivity based on remote sensing were developed using alteration mineral indicative hyperspectral mapping and remote sensing anomaly filtering, combined with geological characteristics and anomalous mineral field verification. Based on the results of the hyperspectral mineral mapping and the actual geological ground conditions, the results of mapping of altered minerals, such as chlorite, muscovite, kaolinite, and iron oxide were validated, and gold, silver, copper, nickel, and other geochemical anomaly areas were identified for verification work. The results of hyperspectral mineral extraction show that the mineral assemblage closely related to gold deposits in shear zones is muscovite + chlorite + epidote + kaolinite. This alteration mineral assemblage can be used as regional search criteria for shear zone gold mineralisation and was the basis for the discovery of mineralised hydrothermal alteration centres and delineation of four prospective targets. Established on a spectral prospectivity model of the study area, prospective ore-bearing areas have been delineated, which indicate the direction for further geological and mineral resource surveys.