Previous work has shown that the concentration of shallow dopants in a semiconductor can be estimated from the photoluminescence (PL) spectrum by comparing the intensity of the bound-to-the- dopant exciton emission to that of the free exciton. In this work, we study the low-temperature PL of high-quality uncompensated Al-doped p-type 4H-SiC and propose algorithms for determining the Al-doping concentration using the ratio of the Al-bound to free-exciton emission. We use three different cryogenic temperatures (2, 41, and 79 K) in order to cover the Al-doping range from mid 10(14) cm(-3) up to 10(18) cm(-3). The Al-bound exciton no-phonon lines and the strongest free-exciton replica are used as a measure of the bound-and free-exciton emissions at a given temperature, and clear linear relationships are obtained between their ratio and the Al-concentration at 2, 41, and 79 K. Since nitrogen is a common unintentional donor dopant in SiC, we also discuss the criteria allowing one to determine from the PL spectra whether a sample can be considered as uncompensated or not. Thus, the low-temperature PL provides a convenient non-destructive tool for the evaluation of the Al concentration in 4H-SiC, which probes the concentration locally and, therefore, can also be used for mapping the doping homogeneity. Published by AIP Publishing.Funding Agencies|Swedish Research Council (VR)