In this paper, a Dish-Stirling Concentrating Solar Power (CSP) system was examined in which the engine works no longer as a receiver but is displaced away from it. In this arrangement it is necessary to adopt a heat transfer fluid capable of transmitting the useful power from the receiver to the hot spring in the Stirling engine head. Various components of the system need designing and especially the heat exchanger in charge of transferring power to the engine head thanks to the cooling of the fluid. The Dish-Stirling system under study includes a linear piston Stirling engine of 4 kW total rated power (3 kW thermal and 1 kW electric). The minimum temperature for starting of the engine is 190°C, while the maximum is 565°C. There are many innovative aspects of dish Concentrating Solar Power systems with Stirling engine dislocated, for example, the possibility of using an increased number of engines powered by a single greater dish and energy savings in the solar tracking system. The work covers the search for the most suitable fluids for the purpose, risks and benefit evaluation of fluids never used previously in the field of solar concentration. The heat exchanger sizing was carried out examining different geometric configurations. The study was conducted using a computer and setting up thermo-fluid dynamics simulations in the ANSYS 14.5 environment. Finally, the results were tested and validated through a comparison study with empirical correlations found in the literature.