Daily thermal fluctuations (DTFs) impact the capacity of ectotherms to maintain performance and energetic demands because of thermodynamic effects on physiological processes. Mechanisms that reduce the thermal sensitivity of physiological traits may buffer ectotherms from the consequences of DTFs. Species that experience varying degrees of DTFs in their environments may differ in their responses to thermally variable conditions, if thermal performance curves reflect environmental conditions. We tested the hypothesis that in response to DTFs, tadpoles from habitats characterised by small DTFs would show greater plasticity in the thermal sensitivity of physiological processes than tadpoles from environments characterised by large DTFs. We tested the thermal sensitivity of physiological traits in tadpoles of three species that differ naturally in their exposure to DTFs, raised in control (24°C) and DTF treatments (20-30°C and 18-38°C). DTFs reduced growth in all species. Development of tadpoles experiencing DTFs was increased for tadpoles from highly thermally variable habitats (∼15%), and slower in tadpoles from less thermally variable habitats (∼30%). In general, tadpoles were unable to alter the thermal sensitivity of physiological processes, although DTFs induced plasticity in metabolic enzyme activity in all species, although to a greater extent in species from less thermally variable environments. DTFs increased upper thermal limits in all species (between 0.89 and 1.6°C). Our results suggest that the impact of increased thermal variability may favour some species while others are negatively impacted. Species that cannot compensate for increased variability by buffering growth and development will probably be most affected.