Since the 1980s, the falling weight deflectometer (FWD) has been the primary deflection-measuring device in the United States to evaluate the structural conditions of in-service pavements. However, the stop and go nature of the FWD limits its application at the network level. In the early 2000s, the traffic speed deflectometer (TSD) was introduced as an alternate deflection-measuring device for network-level applications. TSD collects deflection measurements while traveling at traffic speed, which provides improved spatial coverage and no traffic disturbance. The verification of TSD measurements is of great interest as many agencies move toward widespread implementation. This study aims at developing a reliable and straightforward procedure for the verification of TSD measurements using limited FWD measured deflection measurements. The verification procedure employs a trained artificial neural network (ANN) model to shift TSD deflections to their corresponding FWD deflections. The ANN model was trained and verified based on FWD and TSD measurements from two deflection-testing programs. The developed model accurately predicted FWD measurements with a coefficient of determination (R2) of 0.994. The suitability of the proposed verification procedure was evaluated using statistical and engineering-based measures and showed acceptable accuracy. Results also validated that the proposed method could be used to verify TSD measurements before its use for conducting deflection measurements at the network level.