Temperature dependence of tensile deformation behavior and mechanical properties (yield strength, ultimate tensile strength, and an elongation-to-failure) of the dual-phase (γ-austenite/δ-ferrite) specimens, obtained through electron-beam additive manufacturing, has been explored for the first time in a wide temperature range T = (77–300) K. The dual-phase structures with a dendritic morphology of δ-ferrite (γ + 14%δ) and with a coarse globular δ-phase (γ + 6%δ) are typical of the as-built specimens and those subjected to a post-production solid–solution treatment, respectively. In material with lower δ-ferrite content, the lower values of the yield strength in the whole temperature range and the higher elongation of the specimens at T > 250 K have been revealed. Tensile strength and stages of plastic flow of the materials do not depend on the δ-ferrite fraction and its morphology, but the characteristics of strain-induced γ→α′ and γ→ε→α′ martensitic transformations and strain-hardening values are different for two types of the specimens. A new approach has been applied for the analysis of deformation behavior of additively fabricated Cr-Ni steels. Mechanical properties and plastic deformation of the dual-phase (γ + δ) steels produced through electron beam additive manufacturing have been described from the point of view of composite materials. Both types of the δ-ferrite inclusions, dendritic lamellae and globular coarse particles, change the stress distribution in the bulk of the materials during tensile testing, assist the defect accumulation and partially suppress strain-induced martensitic transformation.