In this work, the influence of light on the temperature dependence of transverse magnetoresistance oscillations is studied. A generalized mathematical expression that calculates the temperature and light dependence of the quasi-Fermi levels of small-scale p-type semiconductor structures in a quantizing magnetic field is derived. New analytical expressions have been found to represent the temperature dependence of transverse differential magnetoresistance oscillations in dark and light situations, taking into account the effect of light on the oscillations of the Fermi energy of small-scale semiconductor structures. A mathematical model has been developed that determines the light dependence of the second-order derivative of the transverse magnetoresistance oscillations of p‑type semiconductors with quantum wells by magnetic field induction. A new theory is proposed, which explains the reasons for the significant shift of the differential magnetoresistance oscillations along the vertical axis measured in the experiment for dark and light conditions.