Physical-biogeochemical models help us to understand the dynamics and the controlling factors of primary production. In this study, the outputs of a validated hydrodynamic and biogeochemical model were used to elucidate the primary production dynamics between 1992 and 2012 for three studied sites on the Lebanese coast: Naqoura, Beirut, and Tripoli. The results showed that primary production presents a homogeneous spatial distribution along the Lebanese coastline. The phytoplankton community has a low optimal temperature. The thermocline develops in March, with maximum stratification in August and fades in October. Chlorophyll, dissolved oxygen and salinity were positively correlated throughout the water column. A significant increasing trend of sea surface temperature was found on the Lebanese coast over 27 years, between 1986 and 2013. Annual averages increased from 22°C in 1986 to 23.1°C in 2013 with the highest recorded average temperature of 23.7 °C in 2010.