Spin Hall effect provides an efficient tool for the conversion of a charge current into a spin current, opening the possibility of producing pure spin currents in non-magnetic materials for the next generation of spintronics devices. In this sense, giant Spin Hall Effect has been recently reported in Cu doped with 0.5% Bi grown by sputtering and larger values are expected for larger Bi doping, according to first principles calculations. In this work we demonstrate the possibility of doping Cu with up to 10% of Bi atoms without evidences of Bi surface segregation or cluster formation, as studied by different microscopic and spectroscopic techniques. In addition, YIG/BiCu structures have been grown, showing a spin mixing conductance larger that the one shown by similar Pt/YIG structures. These results reflects the potentiality of these new materials in spintronics devices.