“…[92] for a recent review). Among existing many-body PEFs for water, MBpol has been shown to correctly predict the vibration-rotation tunneling spectrum of the water dimer [103], the energetics, quantum equilibria, and infrared spectra of small clusters [104,[106][107][108], the structural, thermodynamic, and dynamical properties of liquid water [105,109], the energetics of different ice phases [110], infrared and Raman spectra of liquid water [111][112][113], the vibrational sum-frequency generation spectrum of the air/water interface [114,115], the infrared and Raman spectra of ice I h [116]. More recently, molecular configurations extracted from classical (MD) and quantum pathintegral molecular dynamics (PIMD) simulations with MB-pol have been used to determine the electronic band gap of liquid water, both in the bulk and at the air/water interface, through many-body perturbation theory electronic structure calculations [117].…”