The Li 4 Ti 5 O 12 gassing behavior is a critical limitation for applications in lithium-ion batteries. The impact of electrode/electrolyte interface, as well as the underlying mechanisms involved during the gassing process, are still debated. Herein, a quantitative evolution of the internal pressure in 18650-type cylindrical Li 4 Ti 5 O 12 batteries is investigated using a self-designed pressure testing device. The results indicate that the internal pressure significantly increases during the formation cycle and continues growing during the following cycles. After several charge and discharge cycles, the pressure finally reaches constant. Simultaneously, the formation of the solid electrolyte interphase (SEI) film is also investigated. The results suggest that the initial formed SEI film has a thickness of 24 nm, and is observed to shrink during the following cycles. Furthermore, no apparent increase in thickness accompanying the pressure rising is noticed. These comparative investigations reveal a possible mechanism of the gassing behavior. We suggest that the gassing behavior is associated with side reactions which are determined by the potential of the Li 4 Ti 5 O 12 electrode, where the active sites of the electrode/electrolyte interface manage the extent of the reaction.