“…Many applications use the thermal lens (TL) principle as an ultrasensitive spectrophotometric readout [1] to characterize different physical phenomena, for example (recently found in the literature) to investigate molecular/particle dynamics [2], to measure the photothermal parameters of opaque solids [3], to understand thermal lensing effects using Z-scan-based methods at multiple laser repetition rates and multiple average powers [4,5], to study the effect of highly localized thermal gradients on the catastrophic optical damage process of high-power laser diodes [6], to evaluate optically induced temperature changes in colloidal samples for photothermal therapy [7], to quantify very low concentrations in solutions [8], and to image single light-absorbing nanoparticles by photothermal microscopy [9]. Recently, we have demonstrated experimentally the feasibility of extracting an image of the phase shift induced by TL and applying this method to map an inhomogeneous thin film doped with different concentrations of silver nanoparticles transversally [10].…”