2020
DOI: 10.48550/arxiv.2007.11793
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Temperature evolution of the nuclear shell structure and the dynamical nucleon effective mass

Herlik Wibowo,
Elena Litvinova,
Yinu Zhang
et al.

Abstract: We study the fermionic Matsubara Green functions in medium-mass nuclei at finite temperature. The single-fermion Dyson equation with the dynamical kernel of the particle-vibration-coupling (PVC) origin is formulated and solved in the basis of Dirac spinors, which minimize the grand canonical potential with the meson-nucleon covariant energy density functional. The PVC correlations beyond mean field are taken into account in the leading approximation for the energy-dependent selfenergy, and the full solution of… Show more

Help me understand this report
View published versions

Search citation statements

Order By: Relevance

Paper Sections

Select...
2

Citation Types

1
1
0

Year Published

2020
2020
2020
2020

Publication Types

Select...
1

Relationship

1
0

Authors

Journals

citations
Cited by 1 publication
(2 citation statements)
references
References 52 publications
(91 reference statements)
1
1
0
Order By: Relevance
“…Moreover, the corresponding phase transition is quite sharp, in particular, at temperatures 0 ≤ T ≤ 0.5 MeV there is almost no change in the single-particle properties, as we have verified in Ref. [52]. Based on these observa- tions, we assume that in open-shell nuclei under consideration the GT + spectral functions do not change considerably in the temperature range 0 ≤ T ≤ 0.5 MeV.…”
Section: Details Of Calculations Results and Discussionsupporting
confidence: 68%
See 1 more Smart Citation
“…Moreover, the corresponding phase transition is quite sharp, in particular, at temperatures 0 ≤ T ≤ 0.5 MeV there is almost no change in the single-particle properties, as we have verified in Ref. [52]. Based on these observa- tions, we assume that in open-shell nuclei under consideration the GT + spectral functions do not change considerably in the temperature range 0 ≤ T ≤ 0.5 MeV.…”
Section: Details Of Calculations Results and Discussionsupporting
confidence: 68%
“…The coefficient between T c and ∆(0) may vary from system to system in the relatively narrow limits, in particular, it was found in Ref. [52] that in 68 Ni it takes the value 0.7. We assume that in all isotopes under consideration superfluidity vanishes within 0.5 ≤ T ≤ 1 MeV interval.…”
Section: Details Of Calculations Results and Discussionmentioning
confidence: 99%