The service performance of single crystal blades depends on the crystal orientation. A grain selection method assisted by directional columnar grains is studied to control the crystal orientation of Ni-based single crystal superalloys. The samples were produced by the Bridgman technique at withdrawal rates of 100 μm/s. During directional solidification, the directional columnar grains are partially melted, and a number of stray grains are formed in the transition zone just above the melt-back interface. The grain selected by this method was one that grew epitaxially along the un-melted directional columnar grains. Finally, the mechanism of selection grain and application prospect of this grain selection method assisted by directional columnar grains is discussed.