We conducted microcosm experiments with two contrasting freshwater ciliates on functional traits (FTs) related to their growth rate (numerical response, NR) and ingestion rate (functional response, FR) over a range of ecologically relevant temperatures. Histiobalantium bodamicum and Vorticella natans are common planktonic ciliates but their abundance, swimming behavior, and temperature tolerance are different. In contrast to most sessile peritrich species, the motile V. natans is not strictly bacterivorous but also voraciously feeds upon small algae. We observed three main alterations in the shape of NR of both species with temperature, that is, change in the maximum growth rate, in the initial slope and in the threshold food level needed to sustain the population. Similarly, maximum ingestion rate, gross growth efficiency (GGE), and cell size varied with temperature and species. These findings caution against generalizing ciliate performance in relation to the ongoing global warming. Our results suggest that V. natans is the superior competitor to H. bodamicum in terms of temperature tolerance and bottom-up control. However, the abundance of V. natans is usually low compared to H. bodamicum and other common freshwater ciliates, suggesting that V. natans is more strongly top-down controlled via predation than H. bodamicum. The taxonomic position of V. natans has been debated. Therefore, to confirm species and genus affiliation of our study objects, we sequenced their small subunit ribosomal RNA (SSU rDNA) gene. IT has been known for decades that protists represent central nodes in aquatic food webs (Fenchel 1987). As primary producers, predators, food, and parasites, they are structural elements of any aquatic food web and are of tremendous global and local significance for cycling of matter in the ocean and inland water bodies (