Thermography techniques are gaining popularity in structural integrity monitoring and analysis of mechanical systems’ behavior because they are contactless, non-intrusive, rapidly deployable, applicable to structures under harsh environments, and can be performed on-site. More so, the use of image optical techniques has grown quickly over the past several decades due to the progress in the digital camera, infrared camera, and computational power. This work focuses on thermoelastic stress analysis (TSA), and its main goal was to create a computational model based on the finite element method that simulates this technique, to evaluate and quantify how the changes in material properties, including orthotropic, affect the results of the stresses obtained with TSA. The numeric simulations were performed for two samples, compact and single lap joints. when comparing the numeric model developed with previous laboratory tests, the results showed a good representation of the stress test for both samples. The created model is applicable to various materials, including fiber-reinforced composites. This work also highlights the need to perform laboratory tests using anisotropic materials to better understand the TSA potential and improve the developed models.