Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
The reduction in the supply of fossil fuel available, combined with global warming’s effects on the atmosphere, has led to the discovery of employing sustainable energy for everyday activities. Road energy harvesting is one example of sustainable energy that can be used, as the majority of people spend a substantial amount of their daily activities commuting from one location to another, and numerous types of transportation generate heat that can be converted into energy. This alternative energy source can be implemented on the road, considering that roads are critical infrastructure that has a significant effect on a country’s economy. Furthermore, road infrastructure has been contributing towards the affordability of urbanization and migration, whether locally or internationally. Currently, researchers are working towards integrating road energy harvesting around the world by incorporating various types of materials and technology connected via a sensing system. Many materials have been attempted, including ceramics, polymers, lead-free, nanomaterials, single crystals, and composites. Other possible sources to generate energy from roadways, such as solar power, thermal energy, and kinetic energy, have been investigated as well. However, many studies available only focused on the disclosure of novel materials or the review of technologies produced for road energy harvesting. There have been limited studies that focused on a comprehensive review of various materials and technologies and their implications for the performance of road energy harvesting. Hence, the main objective of this research is to undertake a thorough and in-depth review in order to identify the best materials and technologies for certain types of application in road energy harvesting. The paper discusses energy-harvesting technology, sensing systems, and the potential network based on them. Comprehensive analyses were conducted to evaluate in-depth comparisons between different materials and technologies used for road energy harvesting. The novelty of this study is related to the appropriate efficient, durable, and sustainable materials and technologies for their relevant potential application. The results of this review paper are original since it is the first of its kind, and, to the best knowledge of the authors’ knowledge, a similar study is not available in the open literature.
The reduction in the supply of fossil fuel available, combined with global warming’s effects on the atmosphere, has led to the discovery of employing sustainable energy for everyday activities. Road energy harvesting is one example of sustainable energy that can be used, as the majority of people spend a substantial amount of their daily activities commuting from one location to another, and numerous types of transportation generate heat that can be converted into energy. This alternative energy source can be implemented on the road, considering that roads are critical infrastructure that has a significant effect on a country’s economy. Furthermore, road infrastructure has been contributing towards the affordability of urbanization and migration, whether locally or internationally. Currently, researchers are working towards integrating road energy harvesting around the world by incorporating various types of materials and technology connected via a sensing system. Many materials have been attempted, including ceramics, polymers, lead-free, nanomaterials, single crystals, and composites. Other possible sources to generate energy from roadways, such as solar power, thermal energy, and kinetic energy, have been investigated as well. However, many studies available only focused on the disclosure of novel materials or the review of technologies produced for road energy harvesting. There have been limited studies that focused on a comprehensive review of various materials and technologies and their implications for the performance of road energy harvesting. Hence, the main objective of this research is to undertake a thorough and in-depth review in order to identify the best materials and technologies for certain types of application in road energy harvesting. The paper discusses energy-harvesting technology, sensing systems, and the potential network based on them. Comprehensive analyses were conducted to evaluate in-depth comparisons between different materials and technologies used for road energy harvesting. The novelty of this study is related to the appropriate efficient, durable, and sustainable materials and technologies for their relevant potential application. The results of this review paper are original since it is the first of its kind, and, to the best knowledge of the authors’ knowledge, a similar study is not available in the open literature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.