In this study, an optical sensor using thermo-sensitive phosphor and its measurement system for visualizing and measuring the temperature distribution in an arbitrary cross-section of transmission oil using one type of phosphor, whose peak wavelength changes with temperature, is proposed. Because the intensity of the excitation light is gradually attenuated by the scattering of the laser light owing to microscopic impurities in the oil, we attempted to reduce the scattering effect by increasing the excitation light wavelength. Therefore, Pyrromethene 597 was selected as the optical sensor using thermo-sensitive phosphor, and a DPSS (Diode Pumped Solid State) laser with a wavelength of 532 nm was used as the excitation light. Using this measurement system, we measured the temperature distribution of a vertical buoyant jet of transmission oil and validated the measurement method. In addition, it was shown that this measurement system could be applied to the measurement of the temperature distribution in transmission oil with cavitation foaming.