Tellurium (Te), the most metallic semiconductor, has been widely explored in recent decades owing to its fantastic properties such as a tunable bandgap, high carrier mobility, high thermal conductivity, and in-plane anisotropy. Many references have witnessed the rapid development of synthesizing diverse Te geometries with controllable shapes, sizes, and structures in different strategies. In all types of Te nanostructures, Te with one-dimensional (1D) hollow internal structures, especially nanotubes (NTs), have attracted extensive attention and been utilized in various fields of applications. Motivated by the structure-determined nature of Te NTs, we prepared a minor review about the emerging synthesis and nanostructure control of Te NTs, and the recent progress of research into Te NTs was summarized. Finally, we highlighted the challenges and further development for future applications of Te NTs.