In this study, mesoporous carbon‐rich Mo4.8Si3C0.6/C/SiC ceramic nanocomposites were successfully prepared via a single‐source precursor route, starting from allylhydridopolycarbosilane (AHPCS, SMP‐10), bis(acetylacetonato) dioxomolybdenum (VI) [MoO2(acac)2], and divinylbenzene (DVB). Besides, polystyrene (PS) was used as a pore former. The obtained carbon‐rich single‐source precursor/PS mixtures were pyrolyzed at 1100°C, and then annealed at 1350°C‐1600°C to fabricate a series of carbon‐rich Mo4.8Si3C0.6/C/SiC ceramics comprised of high carbon content above 50 wt%. In comparison to the carbon‐poor materials, the carbon‐rich samples retain the higher specific surface area up to 214.6‐304 m2/g at higher annealing temperatures (1350°C‐1600°C) due to the enhancement of carbothermal reaction. The carbon‐rich samples synthesized at 1500°C, denoted as SM/Mo/PS/DVB 2‐1‐4‐2 1500 exhibit enhanced electrocatalytic performance with ultra‐low overpotentials of 119 mV vs reversible hydrogen electrode at a current density of 10 mA cm−2 in acidic media, which is superior to that of the Mo4.8Si3C0.6/C/SiC ceramic (138 mV) with lower carbon content reported in our previous study. Therefore, our porous materials comprised of high carbon content and Nowotny phase (Mo4.8Si3C0.6, NP) are considered as promising catalysts for the hydrogen evolution reaction (HER).