Anodic aluminum oxide (AAO) consists of parallel pores arranged in a honeycomb-like array. Since a two-step self-organized approach in anodic alumina fabrication was invented, tremendous attention was paid to this material. Structural features of anodic alumina, like pore diameter, interpore distance, and nanoporous oxide thickness, can be fully controlled by operating conditions, including type, concentration and temperature of the electrolyte, applied voltage, and duration of the anodization process. Moreover, these operating conditions have also a major impact on the nanoporous array arrangement. Quantitative arrangement analysis methods employing fast Fourier transforms have been developed to assess the nanopores' arrangement. The most frequent application of the anodic aluminum oxide is a template-assisted fabrication of nanostructures. Templates made of the AAO are being successfully applied in fabrication of nanowires, nanotubes, and nanodots by using diversity of techniques, including electrochemical deposition, physical and chemical vapor deposition, sol-gel techniques, etc. Due to the size of obtained nanostructures, magnetic, electric, piezoelectric, luminescent, and catalytic properties of the deposited materials can be significantly improved. Thus, control of the nanopores' structural features and arrangement is crucial for AAO applications in nanotechnology.