The conservation of developmental functions exerted by Antpclass homeoproteins in protostomes and deuterostomes suggested that homologs with related functions are present in diploblastic animals. Our phylogenetic analyses showed that Antp-class homeodomains belong either to non-Hox or to Hox͞paraHox families. Among the 13 non-Hox families, 9 have diploblastic homologs, Msx, Emx, Barx, Evx, Tlx, NK-2, and Prh͞Hex, Not, and Dlx, reported here. Among the Hox͞paraHox, poriferan sequences were not found, and the cnidarian sequences formed at least five distinct cnox families. Two are significantly related to the paraHox Gsx (cnox-2) and the mox (cnox-5) sequences, whereas three display some relatedness to the Hox paralog groups 1 (cnox-1), 9͞10 (cnox-3) and the paraHox cdx (cnox-4). Intermediate Hox͞paraHox genes (PG 3 to 8 and lox) did not have clear cnidarian counterparts. In Hydra, cnox-1, cnox-2, and cnox-3 were not found chromosomally linked within a 150-kb range and displayed specific expression patterns in the adult head. During regeneration, cnox-1 was expressed as an early gene whatever the polarity, whereas cnox-2 was up-regulated later during head but not foot regeneration. Finally, cnox-3 expression was reestablished in the adult head once it was fully formed. These results suggest that the Hydra genes related to anterior Hox͞paraHox genes are involved at different stages of apical differentiation. However, the positional information defining the oral͞aboral axis in Hydra cannot be correlated strictly to that characterizing the anterior-posterior axis in vertebrates or arthropods. T he discovery of structural and functional homologies between regulatory genes used by Drosophila and vertebrates during their development led to the hypothesis that animals would share a common set of genes for defining the head, trunk, and posterior regions at early developmental stages (1-6). The proposed genes were homeobox genes belonging either to the Antp class, like empty-spiracle (emx), even-skipped (evx), Hox genes, or to the Prd class, like orthodenticle (Otx), goosecoid. Phylogenetic analyses performed on a vast amount of Hox homeodomain (HD) sequences, including representatives from all classes of homeobox genes from animals, protozoa, fungi, and plants, confirmed the monophyly of the Antp class as well as its position as a sister group to the Paired class (7). Within the Antp class, the Hox gene organization is distinctive and enigmatic: the genes map in clusters, and the order of individual genes within a cluster correlates with their temporospatial expression pattern along the anterior-posterior body axis during development (8). Recently, it was proposed that the common bilaterian ancestor of protostomes and deuterostomes had at least seven Hox genes (9). However, the question of the composition of the ancestral HOX cluster remains open. Analysis of Hox homeobox sequences (10) suggested that the conserved HOX cluster emerged early in the evolution of metazoans from an original cluster harboring three ancestral g...